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Abstract. In this paper, we propose a general framework DeepCluster to inte-
grate traditional clustering methods into deep learning (DL) models and adopt
Alternating Direction of Multiplier Method (ADMM) to optimize it. While most
existing DL based clustering techniques have separate feature learning (via DL)
and clustering (with traditional clustering methods), DeepCluster simultaneously
learns feature representation and does cluster assignment under the same frame-
work. Furthermore, it is a general and flexible framework that can employ differ-
ent networks and clustering methods. We demonstrate the effectiveness of Deep-
Cluster by integrating two popular clustering methods: K-means and Gaussian
Mixture Model (GMM) into deep networks. The experimental results shown that
our method can achieve state-of-the-art performance on learning representation
for clustering analysis.

1 Introduction

Clustering is one of the most important techniques for analyzing data in an unsuper-
vised manner, it has a wide range of applications including computer vision [11, 14, 23],
natural language processing [1, 2, 26] and bioinformatics [22, 28]. In the past decades,
a large number of algorithms have been proposed to handle clustering problems [6,
15]. However, there is no algorithm that fits all problems. Clustering method choos-
ing depends on the data to handle and the specific task. Roughly, there are two sets of
approaches, the feature-based clustering algorithms and the similarity-based clustering
algorithms. Most of them try to find the intrinsic data structure from the original feature
space or the underlying subspace.

Among the existing algorithms, K-means [12] and Gaussian Mixture Models (GMM) [4]
are two popular feature-based methods. K-means makes hard clustering that assigns
each sample to its nearest cluster center. GMM assumes that data are generated from
several independent Gaussian distributions and tries to infer these distributions from the
data. Thus, it makes soft assignments. However, they both do clustering in the original
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feature space. Spectral clustering [15] is a representative algorithm of similarity-based
clustering or subspace clustering methods. Most of those approaches start with building
an affinity matrix and project the original data to a linear subspace. Finally, clustering
is done in the subspace.

One problem with most feature-based clustering methods is that they cannot scale
well to high-dimensional data due to the curse of dimensionality. In high-dimensional
data analysis, it is more reasonable to consider some compact and representative fea-
tures instead of the whole feature space. Recently, deep learning (DL) has been devel-
oped and with a great success in many areas, such as image classification and speech
recognition [19]. DL aims to learn a powerful representation from the raw data through
high-level non-linear mapping [3]. Recently, how to use deep representation to improve
clustering performance becomes a hot research topic.

Basically, there are mainly two ways to use deep features for clustering. One is
clustering the hidden features that are extracted from a well-trained deep network [26,
21]. However, these approaches cannot fully exploit the power of deep neural network
for clustering. The other is to embed an existing clustering method into DL models,
which is an end-to-end approach. For example, [18] integrates K-means algorithm into
deep autoencoders and does cluster assignment on the middle layers. It alternatively
updates the network parameters and cluster centers. [25] proposes a clustering objec-
tive to learn non-linear deep features, which minimizes the KL divergence between the
auxiliary target distribution and the model assignments.

In this paper, we propose a new and general framework to integrate traditional clus-
tering methods into deep learning models and develop an algorithm to optimize the
underlying non-convex and non-linear objective based on Alternating Direction of Mul-
tiplier Method (ADMM) [5]. Concretely, we can use a deep autoencoder to reconstruct
the data, and associate deep features with clustering methods by introducing a dummy
variable (say Y). We combine deep models and clustering methods with the constraint
Y = fθ1(X) where X is the data and fθ1(·) is the encoder of deep network. In the op-
timization process, we optimize each part of the model’s parameters alternatively. Our
experimental results shown that instead of directly clustering the hidden features, our
framework works better.

The novelties and contributions of our work are as follows:

– A general clustering framework base on DL, where clustering parameters (except
for the network parameters) can be represented in closed form.

– Both network and clustering method are configurable according to user require-
ments, which make it a flexible framework.

– Based on ADMM, relaxation is introduced to the model by doing clustering on
dummy variable Y.

– Experiments on real datasets show that the new method can achieve state-of-the-art
clustering performance.

2 Related Work

Clustering is an extensively studied area, and up to now many clustering methods have
been developed. Here, we review mainly on the clustering methods that employ DL
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techniques, and briefly highlight the advantages/differences of our work over/from the
most-related existing ones.

Among the popular clustering methods, K-means and GMM are widely used in
many applications. However, they have two drawbacks: one is that they mainly work in
the original feature space; the other is that they cannot handle large and high-dimensional
data sets well.

Spectral clustering and its variants are extensively popular among subspace cluster-
ing methods. [13] develops a distributed framework to solve sparse subspace clustering
via ADMM. However, it considers only linear subspaces. To address this problem, an-
other approach [16] was proposed to incorporate nonlinearity into subspace clustering.
The objective is to minimize the data reconstruction error and add a sparsity prior to the
deep features.

To make use of deep learning features, some works first train a network and then
cluster the hidden features. One of them is to learn a deep autoencoder on a graph
and then run K-means algorithm on the non-linear embedding to get cluster assign-
ments [21]. [26] introduces a novel method for short text clustering by first training
a Convolutional Neural Network (CNN). The target to train CNN is spectral hashing
code, and after network training it extracts deep features on which K-means is run.
These approaches have separate feature learning and clustering.

To conduct end-to-end clustering in deep networks, [18] proposes a model to si-
multaneously learn the deep representations and the cluster centers. It makes hard as-
signment to each sample and directly does clustering on the hidden features of deep
autoencoder. A recent attempt is the Deep Embedding Clustering (DEC) method [25],
which achieves stat-of-the-art results on many datasets, but it may fails when closely
related clusters exist.

Different from the above works, our DeepCluster is a general DL based clustering
framework that can embrace different clustering methods and network structures such
as DAEs, CNNs and RNNs. It provides a flexible mechanism to fit a clustering method
to a deep network for a specific clustering task. Concretely, the most-related existing
methods are DAEC [18] and DEC [25].

Though DAEC is the first work to explore deep feature learning and clustering si-
multaneously, it does clustering directly on the feature space, which is not flexible. DEC
uses only the encoder part of DAE, and assumes that the model can correctly make high
confidence predictions, which if not satisfied, it performs badly. DeepCluster introduces
a copy of features Y and does cluster assignment on it, which makes feature learning
and clustering independent from each other given this Y. On the one hand, DeepCluster
is able to fully take advantages of deep representation for clustering; On the other hand,
recent studies have shown that ADMM can be used to train deep neural network with-
out backpropagation, which means that our DeepCluster is parallelizable and can be
used in asynchronous systems [20]. In summary, DeepCluster provides the feasibility
of combining the most suitable network and clustering method for a specific clustering
task.
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copy of hidden features.

Fig. 1: The DeepCluster architecture.

3 Preliminaries

3.1 Deep Autoencoder (DAE)

A single autoencoder is a three layer neural network with one hidden layer, its output
is to reconstruct the input x. An autoencoder is composed of an encoder and a decoder.
The encoder can be formalized as

a1 = f(W1x+ b1) (1)

where W1 is the weight and b1 is the bias of encoder, a1 means the hidden features of
x. The decoder is formulated as

x̂ = g(W2a1 + b2) (2)

whereW2 is the weight and b2 is the bias of decoder, x̂ is the reconstruction of input.
Deep autoencoder is to stack several autoencoders to build a deep neural network,

where the hidden features learned by a lower level autoencoder are fed to a higher level
autoencoder as input. The first layer autoencoder takes raw data as input.

3.2 Alternating Directed Method of Multipliers (ADMM)

Let us consider a general optimization problem as suggested in [7], which can be for-
mulated as follows:

min
x∈Rn

h(x) + o(Dx) (3)

whereD is an m×n matrix, which is often assumed to have full column rank. h and o
are supposed to be convex functions on Rn and Rm, respectively. To solve Eq. (3), we
can rewrite it by introducing an additional dummy variable z ∈ Rm:

minh(x) + o(z)

s.t. Dx = z.
(4)

This is a constrained convex problem that can be solved by the classical augmented
Lagrangian algorithm (ALM). However, it is not decomposable due to the constraints,
and the subproblems are unlikely to be easier to solve than the original one. The alter-
nating directed method of multipliers (ADMM) is proposed to overcome the drawbacks
of ALM. It is robust and supports decomposition.
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To solve Eq. (3) and Eq. (4), ADMM uses the following forms with a scalar param-
eter ρ > 0:

xk+1 ∈ arg min
x∈Rn

{
h(x) + o(zk) +

〈
λk,Dx− zk

〉
+
ρ

2
‖Dx− zk ‖2

}
zk+1 ∈ arg min

z∈Rm

{
h(xk+1) + o(z) +

〈
λk,Dxk+1 − z

〉
+
ρ

2
‖Dxk+1 − z ‖2

}
λk+1 = λk + ρ(Dxk+1 − zk+1)

(5)

From Eq. (5), we can see that ADMM essentially decouples the functions h and o, and
makes it possible to exploit the individual structures of h and o. Thus, the optimization
procedure can be efficient and parallelizable.

Although the ADMM method was proposed to solve convex problems, many studies
have shown that this approach can be used in non-convex cases, such as nonnegative
matrix factorization [5] and network lasso [8].

4 The DeepCluster Framework

In this section, we give the architecture, formal formulation and algorithm of our Deep-
Cluster framework.

Fig. 1 is the architecture of DeepCluster. The encoder learns hidden feature repre-
sentations and Y is a dummy variable that is required to be equal to the features. We do
clustering on Y instead of the features. The constraint controls the interaction between
autoencoder and the clustering method. During the clustering process, Y is adjusted to
minimize the objective, meanwhile the constraint requires the encoder to learn better
representations for clustering. This framework is flexible and robust, it can be seen as
a multi-task learning model or the clustering part can be seen as a regularizer of deep
autoencoder (DAE). By introducing a copy of deep features as Y and requiring it equal
to the hidden features, we essentially introduce a kind of relaxation to the optimization
procedure, which makes the framework decomposable to two components.

DeepCluster is formulated as follows:

min : ‖X− X̂‖2F + λ ∗ Gw(Y)

s.t. Y = fθ1(X)
(6)

where X is the raw data to be clustered and X̂ is the reconstruction learned by the deep
network. Gw(Y) can be any specific clustering objective function such as K-means. Y
is the dummy variable in order to make parameters decomposable. λ defines a trade-off
between the network objective and the clustering objective. When λ = 0, the problem
degrades to deep network optimization. We add the constraint on Y to make it close to
the features learned from X.

The first part of the above objective is non-convex as deep neural networks contain
multilayer non-linear transformations. It is hard to optimize this model by gradient-
based optimization methods directly, because some clustering methods cannot be solved
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Algorithm 1 The general learning algorithm of DeepCluster
Input: input data X, hyperparameters ρ, λ, learning rate η
Output: a well-trained autoencoder, cluster assignments
1: Initialize parameters of DAE θ, parameters of clustering model w
2: while not converged do
3: update θ: θ = θ − η ∗ dθ
4: update Y:
5: Y = argminY λ ∗ Gw(Y) + ρ

2
‖Y − fθ1(X) + U‖2F

6: update U: U = U + Y − fθ1(X)
7: update w: w = argminw Gw(Y)

8: return θ,w

by them. In this paper, we adopt ADMM to optimize it. First, we derive its augmented
Lagrangian [9] as follows:

Lρ(θ,Y,U,w) =‖X− X̂‖2F + λ ∗ Gw(Y)+
ρ

2
‖Y − fθ1(X) + U‖2F

(7)

where U is the scaled dual variable (or the reciprocal of λ in Eq. (5)) and ρ > 0 is
the penalty parameter. ρ is a very important parameter to control how close between Y
and fθ1(X). Then, we solve the equation by alternatively optimizing some parameters
while keeping the others fixed. For a deep autoencoder that consists of an encoder and
a decoder, we denote θ = {θ1,θ2} as the total network parameters, where θ1 indicates
the encoder parameters and θ2 means the decoder parameters. To optimize θ, we actu-
ally optimize ‖X−X̂‖2F +α · ρ2‖Y−fθ1(X)+U‖2F . Here, α is to control the gradient
influence of the constraint, which is set to 1 by default.

Alg. 1 outlines the general optimization process. Note that by introducing Y, we can
decompose the parameters into two parts and keep the parameter update formulations of
clustering methods Gw(Y) remain the same as before. The challenge is how to optimize
Y that depends on the specific clustering model. This framework is flexible because
we can select the most appropriate clustering algorithms for any specific clustering
task. Moreover, the deep network is also configurable. There are many variants of deep
autoencoders such as denoise autoenocders, convolutional autoencoders and variational
autoenocders.

In what follows, we give a brief convergence and complexity analysis on Deep-
Cluster. DeepCluster’s objective function consists of three parts. The first part is the
reconstruction error of DAE, the parameter update rules here are the same as stochastic
gradient descent (SGD) or its variants. The second part is the clustering objective that
is independent from DAE when Y is given. The last part is the constraint imposed on
Y, which is a convex function of Y. Following the ADMM optimization procedure, as
DAE is nonconvex function of θ, it is hard to prove DeepCluster’s global convergence
directly. Although there are some works to prove the convergence of ADMM on non-
convex problems under some specific assumptions, they do not suit for our case [10,
24]. However, our experiments have shown that DeepCluster can converge to a good
local minima when the value of ρ is properly chosen.
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The computational complexity of DeepCluster consists of three parts: the complex-
ity of clustering algorithm, the complexity of DAE, and the computation of Y. The
complexity of Y optimization is related to the clustering algorithm. For example, it
takes O(TND) in DC-Kmeans where T , N and D are the number of iterations, the
number of samples and the hidden feature dimensionality respectively. This term can
often be omitted in the complexity of clustering algorithm. Thus, DeepCluster has sim-
ilar time complexity to that of DAEC. However, DeepCluster needs additional O(ND)
space to store Y and U.

5 Two Specific DeepCluster Implementations

Here we give two specific implementations of integrating commonly used clustering
algorithms into deep autoencoder (DAE). We choose K-means and GMM as examples.

5.1 DC-Kmeans: Integrating K-means into DAE

K-means tries to find the nearest cluster center for each sample. That is, if the j-th clus-
ter center is the closest to xi, it assigns xi to cluster j with 100% confidence. K-means
is a very simple and has no tunable parameter except K. In the following, we embed
K-means into DeepCluster, and refer this method as DC-Kmeans for convenience.

Following Eq. (6), we have the objective function of DC-Kmeans as follows:

min :
1

N

N∑
i=1

‖xi − x̂i‖2 +
λ

2
∗ ‖yi − c∗i ‖2

s.t. yi = fθ1(xi) i = 1, ..., N

(8)

where c∗i = argmincj
‖yi−cj‖2 , j = 1, ...,K is the closest centroid to yi. Besides,N

is the total number of samples and K is the number of clusters. And following Eq. (7),
we have the corresponding augmented Lagrangian of Eq. (8):

Lρ(θ,Y,U,C) =
1

N

N∑
i=1

‖xi − x̂i‖2 +
λ

2
∗ ‖yi−

c∗i ‖2 +
ρ

2
‖yi − fθ1(xi) + ui‖2

(9)

To solve the above equation, we treat an autoencoder as a non-linear and non-convex
function of θ. Inspired by ADMM, we alternatively optimize each part of the variables
in this objective function. Concretely, we use gradient-based optimization algorithm to
find a good candidate for the network parameters θ. As for Y, C and U, closed form
solutions are available as follows (detailed derivations are omitted):

ynew
i =

λ ∗ c∗i + ρ ∗ (fθnew
1
(xi)− ui)

λ+ ρ

unew
i = ui + fθnew

1
(xi)− ynew

i

cnew
j =

1

Nj

∑
xj∈Cj

ynew
i

(10)
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Algorithm 2 The Learning Algorithm of DC-Kmeans
Input: input data X, hyperparameters ρ, λ, learning rate η
Output: a well-trained autoencoder, cluster assignments
1: Initialize parameters of DAE θ, parameters of clustering model C
2: while not converged do
3: update θ: θ = θ − η ∗ dθ
4: update Y: yi =

λ∗c∗i +ρ∗(fθ1 (xi)−ui)

λ+ρ
, i = 1, ..., N

5: update U: ui = ui + yi − fθ1(xi), i = 1, ..., N
6: update C: cj =

1
Nj

∑
xi∈Cj yi, j = 1, ...,K

7: return θ,C

whereNj is the size of the j-th cluster, Cj denotes the j-th cluster data set. We set λ = 1
in our experiments for simplicity. We outline the learning algorithm in Alg. 2.

5.2 DC-GMM: Integrating GMM into DAE

Another widely-used feature-based clustering method is Gaussian mixture model (GMM).
GMM assumes that all data samples are generated from multiple independent Gaussian
distributions. GMM can be seen as generalized K-means clustering by incorporating
the covariance structure of each cluster. GMM is a probabilistic model and its objec-
tive function is to maximize likelihood P (Y). Let πi be the mixing coefficient of each
Gaussian distribution component, zi be a K-dimensional binary random variable with∑
k zik = 1. We denote the posterior probability of zik as p(zik = 1|yi) = γ(zik).

Each cluster is assumed a multivariate Gaussian distribution with mean µk and covari-
ance Σk.

We can simply treat this model as adding mixture-of-Gaussian prior to the dummy
variables Y, rather than to deep features. The log likelihood of Y is defined as below:

ln p(Y|π,µ,Σ) =

N∑
i=1

ln

[
K∑
k=1

πkN (yi|µk,Σk)

]
(11)

where N (yi|µk,Σk) is a multivariate Gaussian distribution with µk and Σk as its
parameters. In this case, our objective function is:

min :
1

N

N∑
i=1

{
‖xi − x̂i‖2 − λ ∗ ln

[
K∑
k=1

πkN (yi|µk,Σk)

]}
s.t. yi = fθ1(xi) i = 1, ..., N

(12)
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And the augmented Lagrangian of this model is:

Lρ(θ,Y,U, µ,Σ, π) =
1

N

N∑
i=1

{
‖xi − x̂i‖22

− λ ∗ ln

[
K∑
k=1

πkp(yi|µk,Σk)

]

+
ρ

2
‖yi − fθ1(xi) + ui‖2

} (13)

We can derive the update equation of yi in closed form as follows:

ynew
i =

[
λ

K∑
k=1

γ(zik)Σ
−1
k + ρI

]−1[
ρ ∗ (fθ1(xi)− ui)

+ λ

K∑
k=1

γ(zik)Σ
−1
k µk

] (14)

where I is the identity matrix. The other parameters remains the same as in standard
GMM algorithm:

unew
i = ui + ynew

i − fθnew
1
(xi)

µnew
k =

1

Nk

N∑
i=1

γ(zik)y
new
i

Σnew
k =

1

Nk

K∑
k=1

γ(zik)(y
new
i − µnew

k )(ynew
i − µnew

k )T

πnew
k =

Nk
N

(15)

where Nk =
∑N
i=1 γ(zik).

As in DC-Kmeans, we set λ = 1 in this model too. The learning algorithm of DC-
GMM is given in Alg. 3.

6 Performance Evaluation

To evaluate our framework, we use three real-world datasets and compare our methods
against several existing clustering methods. As our aim is to demonstrate the effective-
ness of our framework, instead of pursuing the best performance on each dataset, we
choose the vanilla deep autoencoder for simplicity. There are many choices that can be
exploited to achieve better results, including substituting the network or the clustering
algorithm by a better one.
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Algorithm 3 The Learning Algorithm of DC-GMM
Input: input data X, hyperparameters ρ, λ, learning rate η
Output: a well-trained autoencoder, cluster assignments
1: Initialize parameters of DAE θ, parameters of GMM µ,Σ,π
2: while not converged do
3: update θ: θ = θ − η ∗ dθ
4: update Y:
5:
6: yi =

[
λ
∑K
k=1 γ(zik)Σ

−1
k + ρI

]−1[
ρ ∗ (fθ1(xi)− ui)

7: +λ
∑K
k=1 γ(zik)Σ

−1
k µk

]
, i = 1, ..., N

8:
9: update U: ui = ui + yi − fθ1(xi), i = 1, ..., N

10: update µ: µk = 1
Nk

∑N
i=1 γ(zik)yi, k = 1, ...,K

11: update Σ:
12:
13: Σk = 1

Nk

∑K
k=1 γ(zik)(yi − µk)(yi − µk)

T ,
14:
15: k = 1, ...,K
16: update π: πk = Nk

N
, k = 1, ...,K

17: return θ,µ,Σ,π

Fig. 2: Sample images of MNIST (left) and USPS (right).

6.1 Experimental Settings

Baseline algorithms: We compare DeepCluster with K-means and GMM method on
the original data space as well as deep feature space of a fine-tuned autoencoder. We
denote them as DAE+Kmeans and DAE+GMM. We also compare DeepCluster with
DAEC [18] that is closely related to DC-Kmeans and DEC [25] that is a state-of-the-art
unsupervised clustering model. To evaluate the effectiveness of DeepCluster, we simply
set the number of clusters to the true number of classes for all experiments.

Datasets: Three real datasets are used to do evaluation and comparison, including
two handwritten digits datasets and one text datasets*.

– MNIST: a benchmark dataset for many machine learning tasks. It has 60,000 hand-
written digit images in the training dataset and 10,000 images in the test dataset.
Each image is of 28*28 pixel size. Some sample images are shown in Fig. 2(left).

* USPS can be downloaded from: http://www.cs.nyu.edu/˜roweis/data.html
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– USPS: also a handwritten digits (0-9) dataset and each class have 1100 samples.
These images have been deslanted and size normalized. So the total number of
images in this dataset is 11000, and each image is of 16*16 pixel size. Some sample
images are shown in Fig. 2(right).

– Reuters10k: there are 810000 English news stories in the Reuters dataset. Here,
following [25], we consider the four root categories: corprate/industrial, govern-
ment/social, markets, economics and computer, and use TF-IDF features of the
top-2000 frequently used word stems. Finally, we randomly select 10000 examples
as in DEC because some methods do not scale well.

Table 3 summarizes the major statistics of the datatsets.

Table 1: Dataset Information
Dataset #Classes #Dims #Samples
MNIST 10 784 70,000
USPS 10 256 11,000

Reuters10k 4 2000 10,000

Evaluation Measures: To measure clustering performance, we adopt three metrics,
i.e., Accuracy, Normalized Mutual Information (NMI), Purity and Adjusted Rand Index
(ARI). High value of these metrics indicates better performance. These measures are
defined as follows:

ACC = max
m

∑N
i=1 1(ri = m(ci))

N

NMI =
I(r, ĉ)

(H(r) +H(ĉ))/2

Purity =

K∑
k=1

maxi(n
i
k)

N

ARI =

∑
ij

(
nij

2

)
− [
∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2 [
∑
i

(
ai
2

)
+
∑
j

(
bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
(16)

where 1(·) is an indicator function, ri is the ground-truth label, ci is the cluster assign-
ment and m(·) denotes all possible one-to-one mapping between clusters and labels.
r denotes the ground truth labels and ĉ is the cluster assignments. I(·) is the mutual
information metric and H is the entropy. nik is the number of samples of class i but
assigned to cluster k. ARI is quite complex, nij , ai, bj are values from the contingency
table (see details in [17]).

6.2 Implementation Details

In order to conduct a fair comparison, we choose the same network structure as in [25].
In other words, we stack four autoencoders to build a deep autoencoder and the encoder
structure is d-500-500-2000-10, where d is the dimension of original data. To obtain a
good initialization for our methods, we also do layer-wise pre-training and fine-tuning.
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Note that the features of Reuters10k are very sparse and feature cardinality ranges
from 0 to 38, which is quite different from the other datasets. We conduct two different
sets of initialization steps and activation functions. For Reuters10k, we use exactly the
same initialization and the same activation functions as DEC. The pre-training of the
two image datasets are done by layer-wise training of RBMs, and the fine-tuning are
done as DAEC [18] with sigmoid activation functions. We optimize θ by the AdaDelta
algorithm, which is a variant of the stochastic gradient decent algorithm [27]. However,
we find SGD is more suitable for the Reuters10k dataset as suggested in DEC.

In the training stage of our methods, we use warm start by initializing Y to fθ1(X)
and U = 0. As mentioned before, we set λ = 1 for all experiments. We set α = 0.01
for DC-GMM models on image datasets and DC-Kmeans on Reuters10K dataset. We
carry out linear search to find the best ρ. The convergence threshold of DC-Kmeans is
set to 0.1% and the max iteration is set to 200.

For K-means and GMM-based methods, we run each method 10 times and report
the best performance. For DAEC, we vary λ in {0.2 ∗ i}, i = 1, ..., 5 and report the best
performance. We give the best results of DEC by running its code and do the hyper-
parameter selection as suggested*.

Table 2: Performance comparison on the three real datasets. The highest values of all
metrics on the datasets are in bold.

Method
MNIST USPS Reuters10K

Accuracy NMI Purity ARI Accuracy NMI Purity ARI Accuracy NMI Purity ARI

K-means 0.5618 0.5163 0.5997 0.3837 0.4585 0.4503 0.4767 0.3063 0.6018 0.3863 0.6595 0.3271

GMM 0.3505 0.2836 0.3672 0.1811 0.29 0.2107 0.2917 0.1077 0.494 0.1964 0.4954 0.1048

DAE+Kmeans 0.6903 0.6469 0.7171 0.5325 0.5955 0.5203 0.5985 0.4053 0.6648 0.4456 0.7499 0.4283

DAE+GMM 0.7853 0.7525 0.7896 0.6718 0.6422 0.5967 0.6422 0.475 0.6349 0.3576 0.7096 0.1884

DAEC 0.734 0.6615 0.7383 0.6093 0.6111 0.5449 0.6255 0.4368 0.7019 0.342143 0.7096 0.3247

DEC 0.8496 0.8273 0.8496 0.7721 0.6246 0.6191 0.651 0.4692 0.6945 0.5124 0.7726 0.4963

DC-Kmeans 0.8015 0.7448 0.8015 0.689 0.6442 0.5737 0.6546 0.4559 0.7301 0.4447 0.7663 0.4892

DC-GMM 0.8555 0.8318 0.8555 0.7823 0.6476 0.6939 0.6713 0.4913 0.6906 0.4458 0.7765 0.404

6.3 Experimental Results

Effect of Deep Features: We compare the performance of different K-means based al-
gorithms and GMM based algorithms on all datasets, the results are shown in Fig. 3.
Obviously, the performance on the raw data is worse than on learnt feature spaces.
When features learnt by a fine-tuned deep autoencoder are used, better performance
can be achieved. Moreover, if we embed K-means algorithm into deep models as in
DAEC, the results are much better, as shown in Fig. 3(a),(b),(c). DC-Kmeans outper-
forms DAEC on all metrics because of the introduced relaxation. Fig. 3(d),(e),(f) also
show that feature learning and clustering jointly is better than doing them separately.
Thus, we can conclude that a more compact and representative feature space is impor-
tant and effective for clustering, and deep learning can learn such features.

* https://github.com/piiswrong/dec.
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Fig. 3: Performance comparison in different feature spaces on all datasets. Kmeans-
based methods (a)(b)(c). GMM-based methods (d)(e)(f).

Effectiveness of DeepCluster Framework: As we know, the digits images of USPS
are more illegible than MNIST. We reconstruct the cluster centers by DAEC, DC-
Kmeans and DC-GMM, and the results are shown in Fig. 4. We can see that the centers
learned by our methods are more reasonable than DAEC as there exist duplicated digits
in the reconstructed centroids by DAEC.

DAEC

DC-Kmeans

DC-GMM

Fig. 4: The reconstruction of cluster centroids learned by different methods.

To demonstrate the effectiveness of our methods, we present the performance re-
sults of all methods on the USPS dataset in Fig. 5, and give the performance results
on all datasets in Table 2. We can see that DC-GMM outperforms the other methods in
all metrics on USPS and MNIST. Both DC-Kmeans and DC-GMM outperform DAEC,
which indicates that clustering the dummy variable is better than clustering the deep
features directly. Certainly, DEC outperforms the other methods in NMI and performs
slightly better than DC-Kmeans in ARI on Reuters10K. But DC-Kmeans outperforms
DEC in ACC. DC-GMM achieves comparable performance to DEC, however it under-
performs DEC and DC-Kmeans in ARI.

As shown in Fig. 6, DeepCluster’s convergence is fast and stable. It achieves state-
of-the-art performance after 60 epcohs, and then its performance gets improved slowly
till it converges.
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Fig. 5: Performance comparison on
dataset USPS.
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Fig. 6: Convergence analysis on
Reuters10k dataset.

Effect of Hyperparameter Choice: Here we check our method’s sensitivity to the
hyperparameter ρ. We use different values of ρ to evaluate the model’s sensitivity on all
our experimental settings, the results are shown in Fig. 7. We can see that our method
is robust to ρ. This is very important as it is not possible to do cross-validation in real-
world applications [25].

Time Analysis: We present the time cost of our method in Table 3. DeepCluster
algorithms spend approximately the same time as DAEC. DEC spend the least time
because it works on GPU in Caffe, while DeepCluster and DAEC run on CPU in MAT-
LAB code.

Table 3: Experimental Time Information.(In seconds)
Methods DAEC DEC DC-Kmeans DC-GMM
MNIST 18323 1802 20778 19234
USPS 2896 1037 2657 2715

Reuters10k 2025 1994 2527 2332

7 Conclusion

This paper presents a deep learning based clustering framework that simultaneously
learns hidden features and does cluster assignment. Thanks to employing the ADMM
algorithm, we can optimize our models in an end-to-end manner. We demonstrate the
effectiveness of this framework by embedding K-means and GMM into DAE. Exper-
imental results validate the effectiveness and advantage of our framework, which can
achieve state-of-the-art performance on real-world datasets. Compared to DAEC, our
framework runs clustering algorithms on the dummy variable while constraining the
variable close to the learned features. By introducing relaxation and variable decom-
position. We can optimize this framework by ADMM. Extensive network architec-
tures and clustering methods will be exploited under this framework. For the proposed
method’s reproducible test, please go to this link* for the executable code and data.

* https://github.com/JennyQQL/DeepClusterADMM-Release
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Fig. 7: Parameter sensitivity analysis of DeepCluster algorithms on different datasets.
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