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Abstract

Despite powerful representation ability, deep neural net-
works (DNNs) are prone to over-fitting, because of over-
parametrization. Existing works have explored various reg-
ularization techniques to tackle the over-fitting problem. Some
of them employed soft targets rather than one-hot labels to
guide network training (e.g. label smoothing in classification
tasks), which are called target-based regularization approaches
in this paper. To alleviate the over-fitting problem, here we
propose a new and general regularization framework that intro-
duces an auxiliary network to dynamically incorporate guided
semantic disturbance to the labels. We call it Network as
Regularization (NaR in short). During training, the disturbance
is constructed by a convex combination of the predictions
of the target network and the auxiliary network. These two
networks are initialized separately. And the auxiliary network
is trained independently from the target network, while pro-
viding instance-level and class-level semantic information to
the latter progressively. We conduct extensive experiments to
validate the effectiveness of the proposed method. Experimen-
tal results show that NaR outperforms many state-of-the-art
target-based regularization methods, and other regularization
approaches (e.g. mixup) can also benefit from combining with
NaR.

Introduction
The great success in many real-world applications (e.g. com-
puter vision, natural language processing) has shown the
powerful representation learning capability of deep neural
networks (DNNs) over a variety of data (Szegedy et al. 2016;
Sutskever, Vinyals, and Le 2014). However, they are often
extremely large in depth or width with the number of pa-
rameters being far more than the number of training exam-
ples available. Thus, over-fitting is a big challenge in DNN
optimization, which could seriously degrade the networks’
generalization power.

In the past decade, various regularization techniques have
been developed to tackle the over-fitting problem, from `1, `2
regularization schemes that are derived from traditional lin-
ear models, to dropout (Srivastava et al. 2014), batch nor-
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malization (Ioffe and Szegedy 2015) and these proposed
specifically for DNNs (Szegedy et al. 2016; Wan et al. 2013;
Liu et al. 2018). According to where these methods act on
the networks, we can subsume the existing regularization
methods roughly into four types: weight-based, input-based,
activation-based and target-based.

Specifically, weight-based approaches impose constraints
to network weights to reduce the hypothesis space; input-
based methods add noise or impose transformations to sam-
ples for training more robust networks; activation-based
methods such as dropout randomly drop neurons to alle-
viate feature co-adaptation. These regularization techniques
have been extensively studied in the literature, while there
are relatively less works on target-based regularization.

The principle of target-based regularization methods is
that instead of focusing on the primary class (i.e., the
ground truth), the model also pays some attention to the
other classes. This makes the model more tolerant and less
over-confidence (Szegedy et al. 2016; Pereyra et al. 2017;
Yang et al. 2018). In essence, they are equivalent to inject-
ing prior knowledge to the labels. The differences among
them mainly lie in two aspects: what kind of prior is used
and how to adopt the prior to the labels. For example, la-
bel smoothing and confidence penalty penalize the predicted
distribution by a uniform distribution (Szegedy et al. 2016;
Pereyra et al. 2017); (Xie et al. 2016) proposed a method to re-
place a small portion of the ground truth labels with incorrect
ones in each iteration; Soft target approaches such as teacher-
student optimization and bootstrapping (Hinton, Vinyals, and
Dean 2015; Reed et al. 2015) offer additional training sig-
nals that contain secondary information (Yang et al. 2018;
Furlanello et al. 2018) to the network. Most of these methods
above adopt the prior knowledge as a regularization term in
the original loss function, while teacher-student optimization
needs to train a teacher model first, which causes additional
time consumption.

In this paper, to tackle the overfitting problem, we propose
an efficient and general target-based regularization frame-
work by dynamically incorporating guided semantic distur-
bance to the labels while avoid multiple training stages that
decrease training efficiency. We call the framework Network
as Regularization (NaR in short). One major source of the se-



Figure 1: Top-left: a training example from CIFAR-100
dataset with ground-truth label lion. From second to sixth:
the semantic labels generated by our framework in different
training iteration. The x-axis denotes the probability of each
class, only top-3 possible classes were drawn.

mantic disturbance is an additional network which is referred
to as auxiliary network (AN). The training strategy is simple:
at each iteration, we corrupt the label of each example by a
convex combination of the ground-truth label and the predic-
tions of the target network and the auxiliary network. Then,
we compute the loss function between the target model’s
prediction and the corrupted labels, and employ a gradient
based method to optimize it. Meanwhile, AN is also trained
simultaneously but with the loss between the ground-truth
labels and its prediction individually. After training, AN is
removed and will not incur any more computational burden.

The intuition behind this framework is that a network can
learn instance-level semantic information even when it is not
fully converged. Therefore, inspired by the idea of curriculum
learning (Bengio et al. 2009) that easy samples should be
learned first, we argue that the semantic information learned
during the training process of a network can be used to guide
another one. Instead of giving the answer directly, the auxil-
iary network provides continuous hints till the target network
converges. As shown in Fig. 1, the label distributions of
the target network are changed iteratively according to AN’s
guidance. In addition, the dynamic soft labels can avoid mem-
orization in overparameterized models (Zhang et al. 2017a).

We conduct extensive experiments to evaluate our frame-
work with a variety of network architectures from plain CNN
to wide residual network (Zagoruyko and Komodakis 2016)
for image classification, and LSTM network for language
modeling. We also explore how the architecture of the auxil-
iary network affects the performance of the target network.
Moreover, we show that our framework is compatible with
some other types of regularization methods such as data aug-
mentation, which can also benefit from our framework.

Related Work
Regularization is a practical technique to solve the over-fitting
problem in many machine learning algorithms. Some popu-
lar regularization methods such as `2-norm are effective for
linear models (Crambes et al. 2009). Early works of DNNs

borrowed regularization techniques directly from traditional
machine learning algorithms. As NNs need lots of data, data
augmentation is an important trick to train a good model on
small datasets. Meanwhile, early stopping can efficiently pre-
vent over-fitting (Bengio 2012). Recently, researchers have
also developed some specific regularization techniques for
neural networks, e.g. Dropout (Srivastava et al. 2014), Drop-
Connect (Wan et al. 2013), batch normalization (Ioffe and
Szegedy 2015) and parameter sharing (Ruder 2017). Most of
these methods are compatible to our framework, so instead
of comparing with them, we simply combine some of these
techniques with our model.

Target-based Regularization Label smoothing estimates
the marginalized effect of label-dropout during training, re-
ducing over-fitting by preventing a network from assigning
full probability to each training example (Zhang et al. 2017a).
(Xie et al. 2016) proposed to corrupt a small portion of labels
in a mini-batch manner and showed that it can help to reg-
ularize neural networks. Teacher-student optimization (Hin-
ton, Vinyals, and Dean 2015) is another kind of target-based
regularization methods, by utilizing the predictions of the
teacher model (usually a high-capacity network) to soften
the labels for the student model. Recently, (Furlanello et al.
2018) proposed born-again networks (BAN) and revealed the
phenomenon that when the model capacity of the student net-
work is identical to that of the teacher, the former surprisingly
outperforms the latter model after a few generations.

Two-way Online Distillation Online distillation is a new
research topic that is attracting increasing attention recently.
(Zhang et al. 2018) exploited a two-way knowledge transfer
and demonstrated that training two networks simultaneously
has a potential performance improvement over conventional
distillation. (Anil et al. 2018) investigated the benefits of
codistillation in the case of large-scale distributed training.
The loss employed in codistillation is to match the class
posterior in a peer-to-peer manner. Each student in the cohort
is treated equally. (Wang et al. 2018) proposed KDGAN to
integrate knowledge distillation with GAN. In their paper, the
teacher model and the student learn from each other along
with an adversarial loss. Our framework is different from
codistillation, as the auxiliary model in our method serves
as a regularization term and it is independent from the target
network. Moreover, the capacity of AN may be lower than
the target network, which is conflict to the idea of distillation.

Collaborative Learning Applying two models to the
same task was also explored previously. Co-teaching (Han et
al. 2018) has been proposed to train robust models by select-
ing clean labelled samples with two networks collaboratively.
(Batra and Parikh 2017) proposed cooperative learning to
learn multiple models jointly for the same task but in differ-
ent input attributes. These methods are different from NaR,
as both models communicate with each other while in NaR
the auxiliary network is independent from the target network
during training.

Network as Regularization
Given a dataset D = {xi, yi}Nn=1 with N examples,
(xi, yi) ∈ X × Y and a neural network f(x; θ) with parame-
ter θ (we may omit θ for simplicity), the standard maximum
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Figure 2: The NaR framework. The dotted lines denote nu-
merical operations (no gradient back-propagation). The target
network f is optimized with noisy labels ỹ that contain the
disturbance from the auxiliary network. The function v(·)
denotes an aggregation operation. The auxiliary network is
trained with the ground-truth label y independently.

likelihood estimates θ∗ by minimizing the empirical loss over
the training examples:

θ∗ = argmin
θ

N∑
i=1

`(yi, f(xi; θ)) (1)

For classification task, `(·, ·) is the cross entropy loss and
simply minimizing the cross entropy loss may result in over-
fitting as the loss considers only the ground-truth label, which
will lead the model to assign full probability to the ground-
truth label. From geometrical perspective, minimizing cross
entropy will force NNs to map all samples of the same class
to one point or close to the that point, e.g. [1, 0, ..., 0]︸ ︷︷ ︸

C

, C is

the number of classes. This is not desirable for a loss function
that is expected to generalize well, as it does not consider
the inter-class and intra-class sample variations. Meanwhile,
there is also ambiguity and noise in the data. The hard-coded
labels are not informative, and deep neural networks may be
too lazy to learn and just simply memorize the data (Zhang
et al. 2017a).

To solve such a problem, we consider to map different
examples to different points in the label space. This is con-
sistent with the hypothesis of manifold learning (Roweis and
Saul 2000; Bengio, Monperrus, and Larochelle 2006), the
difference is that we focus on the supervised learning prob-
lem. Instead of injecting noise to the labels as in previous
works (Szegedy et al. 2016; Xie et al. 2016), we propose to
introduce semantic disturbance via exploiting the semantic
information learned by an auxiliary model. Besides, although
static and informative labels are helpful, the learning com-
plexity is also fixed, the NNs can still memorize the data in
such setting. However, the dynamically generated semantic
labels in NaR can alleviate such problem.

Incorporating Semantic Disturbance to Labels

As shown in Fig. 2, we adopt an auxiliary network to guide
the training of the target network. The target network is
trained with disturbed labels and the auxiliary network is
trained with the ground-truth labels. Specifically, suppose the
target network f(x; θ) outputs the posterior probability of a

sample x over ground-truth class c as pθ(c|x):

pθ(c|x) = f(x; θ) =
exp(zc)∑C
k=1 exp(zk)

(2)

where z is the logits or unnormalized log probability. Simi-
larly, let pw(c|x) be the output of the auxiliary model h(x;w),
where w is the parameter of h(x). In order to introduce dis-
turbance to the labels, we construct the noise ξ as a convex
combination of the predictive distributions of the two models:

ξ = αpθ(x) + (1− α)pw(x), 0 ≤ α < 1 (3)

Such a combination is similar to the idea of mixup (Zhang et
al. 2017b), however, the combination in mixup can be seen
as a two-hot embedding without any semantic information.
In our case, ξ contains both class-level and instance-level
semantic information, and it makes our framework more
flexible at a cost of introducing an extra hyperparameter.

The label with semantic disturbance is defined as

ỹ = (1− λ)y + λξ (4)

where λ ∈ [0, 1) is the hyper-parameter that leverages the
ground-truth label and the disturbance. Note that ξ is a nu-
merical vector and there is no gradient propagation to f(x; θ)
and h(x;w). This characteristic enables us to generalize our
framework with a bunch of machine learning algorithms for
the candidate of h(·). Meanwhile, the training processes of
f(x) and h(x) are independent except that for each iteration
f(x; θ) needs to get the prediction pw(x) from h(x;w).

Finally, the objective function of NaR is defined as below:

Lf = H(ỹ, pθ(x)) = (1− λ)H(y, pθ(x)) + λH(ξ, pθ(x))
(5)

where H(p, q) is the cross entropy of two distributions. And
the objective function for h(x) is

Lh = H(y, pw(x)). (6)

NaR can also be applied to regression tasks. Similar to
Eq. (3) and Eq. (4), we can construct ξ with the predictions
of f(x; θ) and h(x;w) and apply the corresponding loss func-
tion (e.g. min-squared error (MSE) loss). Please refer to a
toy example in our experiments.

One key problem in NaR is how to select the auxiliary
network. Intuitively, high-capacity models can provide more
information than low-capacity ones. However, these mod-
els tend to have more parameters and result in over-fitting
quickly. Thus, the over-confidence issue will deteriorate the
semantic information. Besides, how to evaluate a model’s
capacity and select a proper one is also a challenge. Inspired
by the observation in BAN that distilling a teacher model to
a student with an identical architecture can still improves the
student’s performance, We suggest to use the same network
architecture as the target network. And empirical results also
show that such configuration is reasonable.

Different from teacher-student optimization that each
model is trained sequentially, f(θ) and h(w) can be trained
simultaneously and in parallel as h(w) is independent from
the target network. So the time consumption is almost the
same as conventional training, although NaR introduces an



Algorithm 1: Training procedure of NaR
Input: Training set D, hyper-parameters for h and f ;
/* Training */
Initialize: θ and w with different initial conditions;
Repeat:

Randomly sample data x from X ;
1: Update the predictions pθ(x) and qw(x) of x through

a forward pass;
2: Compute the disturbance ξ and the new label

ỹ(Eqs. (3),(4));
3: Compute the loss function of target network and auxil-

iary model (Eqs. (5),(6));
4: Compute the gradient and update θ, w by SGD algo-

rithm.
Until: converged
/* Inference */
Remove auxiliary model and deploy f(x; θ).

additional model to train. As the computation of ξ needs a for-
ward pass of h(x) on x, the mini-batch orders are the same to
both models at each iteration to save time. Besides, the opti-
mization algorithm used for both networks are gradient-based.
The detailed optimization procedure of NaR is presented in
Alg.1.

Relationship with Teacher-Student Training and
Label Smoothing
Here, we discuss the relationship between NaR and other
target-based regularization methods, especially label smooth-
ing regularization (LSR) and distillation-based regularization.

For label smoothing, we replace the observed ground-truth
labels y with noisy labels ŷ = v(y, ζ), where v(·) is the
noising function and ζ is a data-independent random vec-
tor, usually selected as a uniform distribution. The objective
function of LSR is defined as below:

LLSR = H(ŷ, pθ(x)) = (1− ε)H(y, pθ(x))+ εH(u, pθ(x))
(7)

where u is a uniform distribution, ε is the probability that we
replace the ground truth label with u.

From Eq. (7), we can see that label smoothing heavily
penalizes the prediction distribution of each sample to be a
prior distribution (e.g. uniform) that could fail to capture the
intrinsic class-level semantics.

Here, we illustrate that label smoothing regularization
is a special case of NaR. Comparing Eq. (5) and Eq. (7), we
can set α = 0 and the learning rate of the auxiliary network
h(x;w) to zero. Initialize the weights of all layers except
the last one of h to be all-zero matrices and the biases to
nonzero vectors, the weights and bias terms of the last layer
to be a small constant (e.g. 0.01). Then, for each iteration,
ξ = qw(x) will be uniform. So Eq. (5) degenerates to Eq. (7).

Different from LSR, knowledge distillation provides some
semantic information with the cues learned by a high-capacity
model and utilizes these additional information to train a bet-
ter low-capacity student model. Rather than aiming at model
compression, (Furlanello et al. 2018) proposed born-again

neural network (BAN) that sequentially transfers knowledge
from a well-trained model to new student with the identical
capacity. In such training mechanism, BAN consistently im-
proves its performance. As we empirically make AN have the
same architecture as the target network, we compare BAN
with NaR.

Formally, the k-th model is trained with the knowledge
transferred from the (k-1)-th generation. The objective of
BAN is defined as

LBAN = (1− β)H(t, pkθ(x)) + βH(pk−1θ (x), pkθ(x)) (8)

where pk−1θ (x) and pkθ(x) represent the prediction of the
(k-1)-th and k-th generation respectively, β is a coefficient
for the knowledge transfer that is often set as 1 in BAN.

There are some drawbacks with BAN: (1) It needs to be
trained in a sequential mode that undoubtedly increases the
computation time. (2) The semantic information provided by
the teacher model is static during training, thus it is vulnerable
to the over-fitting issue. (3) For high-capacity models, the
well-trained teacher can provide rare additional information
to the next generation.

Similarly, we can recover BAN from NaR, if we set α =
0 and h(x) be a pre-trained model with the same architecture
of f(x; θ).

Very interestingly, from the analysis above, we can con-
clude that the optimization process of NaR starts from label
noise and ends at BAN.

Generally, NaR keeps the merits of existing target-based
regularization methods while discards their drawbacks.
Briefly, the disturbance in NaR is dynamic and semantic that
can help the target network to avoid over-fitting and improve
its performance. At the beginning of training, AN does not
learn any valuable information from the data, the prediction
of AN is nearly equivalent to random guess. As the learning
proceeds, AN consistently improves its performance on the
data and thus it is capable to learn the semantic information
such as secondary information (Yang et al. 2018). The norm
of the disturbance in the learning process is reduced from
large to small. Finally, at the end of training, the disturbance
is nearly static, which can be seen as the status of BAN.

Experiments
To evaluate the performance of NaR and compare it with state-
of-the-art target-based regularization methods, we conduct
experiments on three datasets, including CIFAR-10, CIFAR-
100 and PTB. We also explore whether NaR is meaningful
for regression task on a toy example. All the networks are im-
plemented in Pytorch v1.0 and all experiments are carried out
with two NVIDIA TITAN Xp. Our code is free available 1.

A Toy Example of Regression Task
We first qualitatively evaluate the semantic disturbance of
the proposed method on a one-dimensional toy regression
dataset. This dataset was used in (Lakshminarayanan, Pritzel,
and Blundell 2017; Hernández-Lobato and Adams 2015),
and consists of 20 training examples drawn from y = x3 + ε
where ε ∼ N (0, 32).

1https://github.com/codeforNaR/NaR
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Figure 3: Results on a toy regression task: x-axis denotes x. On the y-axis, the blue line is the ground truth, the red dots are
observed noisy data points and the gray lines correspond to the mean along with three standard deviations of noisy labels with 5
runs. Both the target network and the auxiliary network are trained with MSE, and from left to right correspond to different
training epochs (step size is 50). The results show that for some outliers such as the leftmost example, NaR provides a new target
with quite large disturbance even when the model is close to convergence.

For the target network and the auxiliary network, we use
one hidden layer neural network with the hidden size 50
and 20, respectively. We run each experiment 5 times and
save the intermediate uncertain targets for the examples and
plot the mean of the new targets along with three standard
deviation (gray shadow in Fig. 3). Similar to classification,
the disturbance in the early training stage is large as the
auxiliary network is not able to fit the data. However, when
the training converges, the disturbance in densely-distributed
area (samples larger than -2) is small, while for some outliers
the disturbance remains large. Although this is a toy example,
we can still validate the intuition that the auxiliary network
is able to provide semantic disturbance to the target network.
Specifically, in regression task, the disturbance can reduce
the estimation error because the data always contain noise.

Multi-class Image Classification
Datasets. The CIFAR-10 and CIFAR-100 datasets consist
of 32× 32 color images containing objects from 10 and 100
classes, respectively, both have 50,000 images in the train set
and 10,000 images in the test set.
Evaluation metric. Top-1 classification error rate is used
as performance metric for both datasets. We run each set-
ting with 5 times and report the average performance with
standard deviation.
Networks. We compare a bunch of networks with different
model capacities. A plain CNN with 6 convolution layers
and 2 fully connected layers is used for simple architecture
validation (Liu et al. 2018), we denote it as PlainCNN-6
for convenience.The other networks include ResNet-32 (He
et al. 2016a), PreResNet-110 (He et al. 2016b) and Wide
ResNet (WRN-28-10) (Zagoruyko and Komodakis 2016).
The number of parameters of all these networks are reported
in Table 1. Note that most of the parameters in PlainCNN-6
are from the fully connected layers.
Implementation details. Following the experimental set-
tings of (Zagoruyko and Komodakis 2016), we use SGD
with Nesterov momentum, and set the initial learning rate as
0.1, momentum as 0.9 and batch size as 128. As PlainCNN
and WRN are two overparameterized networks, the weight-
decay is set to 5e-4 and the learning rate dropped by 0.2
(0.1 for PlainCNN) at 60, 120 and 160 epochs, and we train
totally 200 epochs. For ResNet-32 and PreResNet-110, the
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Figure 4: Sensitivity analysis of hyper-parameters on CIFAR-
100 with ResNet-32.

weight-decay is 1e-4, the learning rate dropped by 0.1 at 150
and 225 epochs, and the total training epoch is 300. We use
horizontal flips and random crops with padding size 4 for
data augmentation. The standard data preprocess is adopted
by transforming the pixel value to [0,1] and subtract the mean
and divided by the std value for each pixel. For heterogeneous
settings used for the target network and the auxiliary network,
the total training epoch is decided by the target network. For
example, if ResNet-32 is used as the auxiliary network for
PlainCNN-6, the total training epoch is 200.
Hyperparameter analysis. There are two hyperparameters
in NaR. Here we evaluate how the selection of hyperparam-
eters affects the performance. We vary λ and α from 10−2

to 0.9 on CIFAR-100 with ResNet-32. The performance are
shown in Fig. 4. Based on the results in Fig. 4, we set λ = 0.5
and α = 0.1 for the following experiments.
Results on CIFAR. All results are summarized in Table 2.
We only present the results of comparing NaR with label
smoothing and BAN on CIFAR datasets as the other target-
based regularization methods such as confidence penalty and
Disturblabel (Xie et al. 2016) can not improve the perfor-
mance when data augmentation is applied (Pereyra et al.
2017).

From Table 2 we can conclude that NaR outperforms LSR
and BAN on both datasets with all these network architec-
tures. The improvements on CIFAR-10 are not as significant
as on CIFAR-100, the reason is that the classes of the same
superclass in CIFAR-100 are more correlated with each other
than the classes in CIFAR-10. It is surprising to note that
PlainCNN with NaR outperforms ResNet-32 trained with



Table 1: The number of parameters of different networks on CIFAR-100 dataset.

Networks PlainCNN-6 ResNet-32 PreResNet-110 WRN-28-10

# Parameters 2.2M 0.5M 1.7M 36.5M

Table 2: Evaluation of NaR on CIFAR datasets and comparison with several state-of-the art target-based regularization methods.
BAN-m means the m-th generation of BAN.

Networks CIFAR10 CIFAR100
PlainCNN ResNet32 WRN PlainCNN ResNet32 WRN

Baseline 8.20±0.23 7.41±0.21 3.98±0.08 32.99±0.16 31.05±0.20 18.82±0.10
LSR 7.51±0.12 6.53±0.13 4.32±0.20 31.26±0.14 29.38±0.08 18.47±0.08

BAN-2 6.95±0.10 6.74±0.08 3.88±0.05 29.87±0.11 29.45±0.08 18.40±0.06
BAN-3 6.64±0.08 6.54±0.07 3.78±0.08 29.35±0.09 29.21±0.10 18.29±0.08

NaR 6.64±0.12 6.21±0.10 3.70±0.08 28.78±0.10 27.82±0.07 17.30±0.06

BAN for 3 generations on CIFAR-100.
Effect of the model capacity of auxiliary networks. To in-
vestigate how the model capacity of the auxiliary network
affects the performance of the target network, we design ex-
periments by using the networks in Table. 1 as the target
network and the auxiliary network, respectively. The results
on both CIFAR datasets are shown in Table 3. We can see
that using PreResNet-110 as the auxiliary network achieves
the best performance when the target network uses residual
networks. However, WRN-28-10 underperforms ResNet-32
and PreResNet when it acts as AN. The reason is that WRN
is a very high-capacity network and it can provide less distur-
bance than the light-weight networks. Besides, PlainCNN-6
has more parameters than ResNet-32 but it underperforms
ResNet-32, because most of its parameters belong to the fully
connected layers. Meanwhile, as we mentioned before, using
identical architecture for the target network and AN usually
achieves satisfactory results.

Language Modeling
To further evaluate the effectiveness of our method, we
conduct word-level language modeling experiments on
Penn Three-bank dataset (PTB) (Marcus, Santorini, and
Marcinkiewicz ). For simplicity, we used the similar ex-
perimental settings as in (Pereyra et al. 2017). Briefly, a
2-layer, 1500-unit LSTM with 65% dropout applied on all
non-recurrent connections is employed as the target network.
The only difference is that we multiply the learning rate by
0.25 when there is no performance improvement on vali-
dation set. We compare our method with label noise, label
smoothing (LSR), confidence penalty (CP) and BAN, and
use linear search for setting their hyperparameters. We also
present the results without using regularization technique
as the baseline. We use two NaR settings for the auxiliary
network: 1) a smaller network has only half of the hidden
units of the target network, which is denoted as NaR-small;
2) the auxiliary network uses the same architecture as the
target network, which is denoted as NaR-large.

As shown in Table 4, CP significantly outperforms LSR
and label noise. With the help of semantic soft targets, BAN
can achieve slightly better result than CP, and NaR-small
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Figure 5: Results of snapshots regularization on CIFAR-100
dataset.

achieves the best results on both validation and test set. These
results indicate that for overparameterized models, a small-
capacity auxiliary network may be helpful to alleviate over-
fitting issue.

Replacing NaR with Snapshots Regularization
As mentioned before, the progressive disturbance incorpora-
tion from a raw auxiliary network will help the target network
to learn better than from a mature auxiliary network. To vali-
date this claim, we replace NaR with snapshots regularization.
Briefly, instead of constructing the disturbance from the aux-
iliary network that is trained synchronously with the target
network, we consider the situations that the disturbance is
advanced or delayed. In other words, we construct the dis-
turbance from an earlier or later iteration of the AN. Such
experimental setting is basically similar to snapshot distilla-
tion (Yang et al. 2019). The difference lies in that we just
borrow semantic information from an additional model rather
than from the earlier epoch of the target network.

Denote the l-th iteration as the current iteration, we use
the snapshot of the auxiliary network at the sl-th iteration to
construct the disturbance in Eq. (3). We consider two settings
of sl: 1) snappre, using a previous snapshot of the current iter-
ation, i.e., sl = b lS cS where S is a constant interval between
two snapshots. 2) Snappos, using a following snapshot of the
current iteration, that is, sl = (b lS c+ 1)S, which means we
use a more mature (or better) model (compared to the target



Table 3: The test error rate results when using different auxiliary networks to regularize the target network on CIFAR-10 and
CIFAR-100. Each row indicates a kind of target network architectures, and Columns 3-7 represent different choices of the
auxiliary network. For comparison, the 3rd column Single presents the baseline performance of each target network.

Dataset Network Types Single PlaincCNN-6 ResNet-32 PreResNet-110 WRN-28-10

CIFAR-10

PlainCNN-6 8.20±0.23 6.64±0.12 6.54±0.11 6.48±0.08 6.24±0.06
Resnet-32 7.41±0.21 6.6±0.10 6.21±0.08 6.12±0.11 6.14±0.08
PreResNet-110 5.11±0.11 4.57±0.07 4.24±0.06 4.15±0.06 4.44±0.08
WRN-28-10 3.98±0.08 3.72±0.06 3.69±0.05 3.50±0.06 3.70±0.08

CIFAR-100

PlainCNN-6 32.99±0.16 28.78±0.08 27.52±0.08 28.89±0.10 29.03±0.12
Resnet-32 31.05±0.20 28.93±0.13 27.82±0.05 27.68±0.06 27.75±0.10
PreResNet-110 23.22±0.14 22.56±0.08 21.75±0.12 21.48±0.07 21.51±0.05
WRN-28-10 18.82±0.10 18.73±0.04 18.25±0.08 17.9±0.10 17.30±0.06

Table 4: Validation and test perplexity for word-level Penn
Treebank.

Methods Validation Test

Baseline 80.55 77.26
Label noise 79.87 77.67
LSR 79.08 76.98
CP 77.35 74.93
BAN-2 77.54 74.81
NaR-small 76.78 73.77
NaR-large 77.90 74.44

Table 5: Results of combining NaR with AT and mixup on
CIFAR-10 and CIFAR-100 datasets.

Networks
CIFAR-10 CIFAR-100

PlainCNN ResNet-32 PlainCNN ResNet-32

AT 8.83 7.93 33.11 32.71
AT+NaR 7.17±0.11 6.53±0.13 30.26±0.16 29.19±0.10

mixup 7.28 6.77 32.35 29.22
mixup+NaR 6.22±0.21 5.82±0.12 27.13±0.13 26.87±0.09

network) to provide semantic information.
We carry out experiments on CIFAR-100 dataset with

PlainCNN-6 and ResNet-32. The results are shown in Fig. 5.
Both settings outperform BAN while underperform NaR.
This suggests that incorporating disturbance to the labels in a
progressive manner can improve the performance of NNs.

Combining NaR with Adversarial Training and
mixup
To demonstrate that NaR can also work with other reg-
ularization techniques, especially some popular data aug-
mentation tricks, we conduct experiments that NaR coop-
erates with adversarial training (AT) (Szegedy et al. 2014;
Goodfellow, Shlens, and Szegedy 2015) and mixup (Zhang et
al. 2017b). There are several methods to generate adversarial
examples, in this paper we use the fast gradient sign method
proposed in (Goodfellow, Shlens, and Szegedy 2015). It has
been shown that using adversarial examples for data aug-
mentation can improve classification robustness (Goodfellow,
Shlens, and Szegedy 2015). Mixup (Zhang et al. 2017b) con-
structs a new examples by linear combination of two existing
examples and their labels.

We choose two network architectures: PlainCNN-6 and
ResNet-32 to conduct the experiments on CIFAR datasets.
We first evaluate the AT and mixup methods individually on
the two datasets with these two networks respectively, and
take their results as the baselines. Then, we combine AT and
mixup training with NaR respectively. The results are shown
in Table 5. It is remarkable that NaR can improve the perfor-
mance of the network along with AT. Though mixup alone
can significantly boost the performance of neural networks,
and much performance improvement can still be achieved
when cooperating with NaR.

Conclusion and Future Work
In this paper we propose a novel framework for incorporating
semantic disturbance to labels by training an auxiliary net-
work along with the target network. The disturbance from the
auxiliary network provides instance-level and class-level se-
mantic information as the examples in the same class have dif-
ferent label distributions. By incorporating these information
to the labels progressively, the target network can achieve bet-
ter generalization capability. We show that some target-based
regularization methods are special cases of our framework.
Empirical results validate the effectiveness and advantages
of dynamic semantic disturbance and the promising poten-
tial of combining this framework with other regularization
techniques.

In summary, NaR provides a flexible and powerful ap-
proach for DNNs to handle over-fitting by learning from
dynamic and semantic labels. In the future, we will consider
using traditional machine learning algorithms (e.g. random
forest) to replace the auxiliary network, and explore the ap-
plication of our framework to complex regression tasks such
as human pose recognition.
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